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Abstract As clinical and cognitive neuroscience mature,

the need for sophisticated neuroimaging analysis becomes

more apparent. Multivariate analysis techniques have

recently received increasing attention as they have many

attractive features that cannot be easily realized by the more

commonly used univariate, voxel-wise, techniques. Multi-

variate approaches evaluate correlation/covariance of acti-

vation across brain regions, rather than proceeding on a

voxel-by-voxel basis. Thus, their results can be more easily

interpreted as a signature of neural networks. Univariate

approaches, on the other hand, cannot directly address

functional connectivity in the brain. The covariance

approach can also result in greater statistical power when

compared with univariate techniques, which are forced to

employ very stringent, and often overly conservative, cor-

rections for voxel-wise multiple comparisons. Multivariate

techniques also lend themselves much better to prospective

application of results from the analysis of one dataset to

entirely new datasets. Multivariate techniques are thus well

placed to provide information about mean differences and

correlations with behavior, similarly to univariate approa-

ches, with potentially greater statistical power and better

reproducibility checks. In contrast to these advantages is the

high barrier of entry to the use of multivariate approaches,

preventing more widespread application in the community.

To the neuroscientist becoming familiar with multivariate

analysis techniques, an initial survey of the field might

present a bewildering variety of approaches that, although

algorithmically similar, are presented with different empha-

ses, typically by people with mathematics backgrounds. We

believe that multivariate analysis techniques have sufficient

potential to warrant better dissemination. Researchers

should be able to employ them in an informed and accessible

manner. The following article attempts to provide a basic

introduction with sample applications to simulated and real-

world data sets.
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Introduction

Multivariate techniques have made substantial inroads

into cognitive and clinical neuroimaging and are bound

to become the accepted modus operandi as people have

realized the limiting factors of the more commonly used

mass-univariate analysis (for a recent review see [1]).

The topographic interpretation of multivariate analysis is

less clear than of univariate activation maps, which com-

plicates judging the relative merits of both approaches

for research questions of cognitive neuroscience aimed at

the discovery of neural substrates of brain processes.

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(www.loni.ucla.edu/ADNI). As such, the investigators within the

ADNI contributed to the design and implementation of ADNI and/or

provided data but did not participate in analysis or production of this

report. A listing of ADNI authors is available at http://www.loni.ucla.

edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf.

Matlab code for spatial covariance analysis is downloadable

at http://groups.google.com/group/gcva.
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However, multivariate techniques have an empirically

verifiable advantage over univariate approaches when it

comes to predicting outcome measures from independent

data on the basis of previously identified brain–behav-

ioral relationships. This slightly different focus from the

traditional goal of cognitive neuroscience has become

more prominent in recent years under the rubric of

‘‘brain reading.’’ In the context of brain reading, multi-

variate approaches have been shown to be both more

sensitive and more specific than univariate approaches.

This is not surprising since multivariate techniques

achieve sparse representations of complex data and can

identify the robust features that are most important for

classification and prediction problems. Non-parametric

techniques [2, 3] or standard machine learning tech-

niques like k-fold cross validation [4] can aid in this

endeavor and are easily performed on modern computers,

obviating the pragmatic and historical advantage of

easily available parametric statistical inference and

model selection that univariate techniques have enjoyed.

However, some disadvantages of the multivariate

approach remain, mainly pertaining to higher demands of

computational and mathematical literacy on the data ana-

lyst, which presents an effective barrier to the more wide-

spread use. Further, after finding the resolve for serious

engagement with multivariate techniques, the neuroscience

researcher might find herself lost in a large variety of

approaches and software packages (as well as acronyms).

While the advantages of multivariate over univariate anal-

ysis are relatively easy to formulate and demonstrate, the

same cannot be said for the large number of approaches

within the field of multivariate analysis. In our experience of

applying multivariate techniques to a variety of data sets

from clinical and cognitive neuroscience, it appears to us

that favoring one particular approach and software package

across the board, while seemingly comforting and under-

standable, will often result in a less than optimal way of

analyzing the data, i.e., sensitivity and specificity might be

less than what they could have been. Frustratingly, the rel-

ative merits of different multivariate techniques always

depend on the variance structure of the particular data set

under consideration, meaning that absolute statements about

merits and drawbacks of different multivariate techniques

are impossible. The most promising strategy, in our view, is

to equip the clinical and cognitive neuroscientist with the

tools to arrive at an optimal selection of multivariate

approaches herself for the particular data set under consid-

eration. Conceptually, this is not difficult to do: it involves

(1) a choice of a meaningful performance metric for meth-

odological comparisons, (2) a variety of pre-determined

multivariate prediction or classification tools, and (3) two

data sets, one for the derivation of the optimal predictor/

classifier, and one for the testing of the prediction/

classification (=brain reading) performance of the previ-

ously derived classifiers. The choice of the best classifier

(or an ensemble of different classifiers) is then readily made

on the basis of the best performance in the test data set, as

judged by the adopted performance metric. Usually, there is

not sufficient data to provide both a derivation and a test data

set, but the use of k-fold cross validation [4] enables the

estimation of generalization performance in one data set.

The current article strives to provide a simple intro-

duction to multivariate approaches based on Principal

Components Analysis (PCA).1 Further, it adds to the large

body of evidence of the superiority of multivariate tech-

niques by showing a simple application to a clinical data

set from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). A few disclaimers are probably in order: the

review aspects of our article are selective not only in

content, but also when it comes to referencing other

authors’ contributions. Even for all PCA-based approa-

ches, we cannot possibly do justice to all major contribu-

tions of recent years; this acknowledgment itself shows the

promising and quickly expanding scope of multivariate

approaches. We strove to give a basic introduction to

PCA-based approaches with some citations of landmark

articles and encourage the reader to follow up on these

citations independently. Further, since the current article

is methodological in nature, the traditional distinction

between the Methods and Results is somewhat blurred. We

hope that reader whether novice or seasoned practitioner of

multivariate techniques will profit from our article.

Basics of PCA and Notational Conventions

First, we give a simple explanation of PCA, the most basic

and well-understood form of multivariate decomposition.

As we mentioned before, there are many types of multi-

variate decompositions—we picked PCA since in our

opinion it is the best understood of all multivariate

decompositions and computationally fast to run, with a

clear ordering of the results in terms of variance accounted

for. This simplicity is seen by some authors as a vice rather

than a virtue, with the justification that neuroimaging data

are of such complexity that a simple algorithm like PCA

cannot be adequate for illuminating analysis. While this

statement is superficially appealing, it neglects to mention

that complex tools and algorithms can have a ‘‘life of their

1 The literature on PCA is vast. A good didactic exposition with a

historical overview and references can be found at http://en.wiki

pedia.org/wiki/Principal_component_analysis.
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own’’ and introduce artifacts whose proper assessment

demands rigorous pre-testing with Monte-Carlo simula-

tions and test runs on simple real-world data sets that are

understood perfectly in terms of their variance structures.

Otherwise, the analyst runs the risk of unleashing poorly

understood, but complex, tools on even more complex

brain data with an insufficient understanding of the ensuing

results. For this article, such techniques are thus beyond the

scope of our investigation.

Some notational conventions first: matrices are given in

capital bold-face, while column vectors are given in lower-

case bold-face. Row vectors are just transposed versions of

column vectors and no separate notation will be introduced

for them. Scalar variables are given in italics. Furthermore,

we follow the conventions of the software package

Matlab for concatenation of vectors. [x y] denotes the

assembly of the two column vectors x and y into a matrix

that has 2 columns and as many rows as x and y. [x; y], on

the other hand, is column vector that has twice as many

rows as x and y. Dimensions of matrix are denoted with a

curly bracket, for instance for a 40-by-2 matrix X, we can

write

Xf g ¼ 40� 2:

Transposition is expressed as XT, so

XT
� �

¼ 2� 40:

Any data array analyzed in this article assumes a data

matrix Y with R rows, i.e., one row per image voxel (=3-

dimensional pixel), and N columns, i.e., one column per

brain image included in the data set. Usually N is several

orders of magnitude smaller than R. A typical neuroim-

aging experiment might comprise 40 human participants

who are scanned in a functional MRI experiment in 2

experimental conditions. In this case, N = 2 * 40 = 80,

and the number of voxels R usually is on the order of

several hundreds of thousands. Thus, the rank of the data

matrix Y is N, and this determines the number of Principal

Component (PCs) that follow from a PCA. It is customary,

although not necessary, to remove the grand mean image

from the data array, reducing the rank to N - 1. Further,

we assume that all columns of Y have been mean-centered.

These normalizations assure that voxel-by-voxel and sub-

ject-by-subject covariance matrices are just scaled versions

of YYT and YTY, respectively.

Next, we will perform the PCA on the data array. Since

the rank of the data matrix is N, an Eigen decomposition of

the voxel-by-voxel covariance matrix YYT is impossible

since this matrix is rank-deficient. Instead, we perform the

Eigen decomposition on the scan-by-scan covariance

matrix YTY, and then obtain the Eigen images by projec-

tion. The Eigen equation reads:

YTY wi ¼ kiwi i ¼ 1; . . .;N � 1;

where wi are the Eigen vectors in subject space, i.e., the

dual of the voxel space, and the associated Eigen values are

ki. The Eigen vectors have N - 1 rows each and can be

assembled in a matrix W

W ¼ w1w2w3; . . .;½ �:

One can see easily how the projection into voxel space

works by multiplying with Y from the left to obtain:

YYT Ywi ¼ ki Ywi ¼ kivi:

This is the Eigen equation for the voxel-by-voxel

covariance matrix YYT and the Eigen vectors in voxel

space (=brain images or PCs) are conveniently obtained by

a simple multiplication of wi with Y from the left. Again,

the PCs can be assembled in a matrix according to

V ¼ v1v2v3; . . .;½ �:

This matrix has R rows and N - 1 columns.

With the final assembly of all Eigen values into a matrix

according to

K ¼ diag k1; k2; k3; . . .;ð Þ

we can express the full data array as

Y ¼ V sqrt Kð ÞWT:

A few noteworthy observations can be made: the PCA

achieves a decomposition of the data into one factor

(V) that is only dependent on the voxel locations in the

brain and one factor (W) that is only dependent on the

subject index. The PCs assembled in V are invariant across

the group and can serve as basis vectors for a coordinate

system in terms of which the data Y can be conveniently

summarized. They can be visualized as brain images and

assign loadings to every voxel location in the brain. For our

purposes we will combine the square root of the Eigen

value matrix and W into on matrix Z and rewrite the

previous equation as

Y ¼ V ZT ¼ v1zT
1 þ v2zT

2 þ v3zT
3 þ � � �

We term the column vectors in Z, subject score vectors.

The normalization for both PCs and subject score vectors

are

vT
i vj ¼ dij; zT

i
zj ¼ kidij:

Let us summarize what we accomplished:

• the data matrix Y was expressed as a product of

subject-invariant PCs in V, and voxel-invariant subject

scores in Z;

• PCs are mutually orthogonal, subject score vectors are

mutually orthogonal;
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• the Eigen value ki indicates how much variance the

associated ith PC accounts for in the data array Y; the

fraction of the variance accounted for by this PC is

computed through division of ki by the sum of all Eigen

values.

We stress again that PCA is just one way of achieving a

multivariate decomposition, and we chose it for its relative

simplicity and transparent nature. Obviously, for the

expression Y = V ZT there is an infinity of choices for

V and Z. PCA imposes orthogonality on the columns of

both V and Z. Other choices like independent component

analysis impose statistical independence beyond just sec-

ond-order moments on either V or Z or both. Other

decompositions might be reasonable and conceivable too,

particularly if furnished with clear algorithmic formula-

tions that can be executed on null-data to empirically

generate the null-distribution for any test statistic of choice.

One last thing to notice is the following: we explained

how PCA achieves the decomposition Y = VZT, a repre-

sentation of the data matrix in terms of PCs and their

subject scores. The PCs in V form an orthonormal basis set;

this means that any data set Y* can be expressed in terms

of these components with modified subject scores Z* plus a

residual term of unaccounted variance, regardless whether

Y* is the ‘‘derivation data set,’’ i.e., original data set from

which V was derived:

Y� ¼ VZ�T þ E:

In an independent ‘‘replication data set,’’ subject scores of

the PCs assembled in V are easily computed according to:

Z� ¼ Y�TV:

Any brain–behavioral relationship that was discovered in

the derivation data set Y and involves the subject scores in

Z, can now be tested in the replication data set, using the

subject scores in Z* and the subject variable of interest.

This means that rather than relying on statistical inference

in the derivation data set, one can check empirically

whether the findings hold up in a replication data set—a

very powerful additional validity test. We will make use of

this feature of prospective application extensively in this

article.

One important caveat about PCA that needs to be

brought to the practitioner’s attention is its susceptibility to

outliers. Since PCA operates on the parametrically com-

puted variance–covariance matrix, this susceptibility is not

surprising and we have observed it in PET and fMRI data

numerous times in practice. Single brain images might

contribute an overwhelming portion of the variance,

resulting in an abnormally large variance concentration in

the first PC ([90%). Essentially, one participant’s brain

image contributes an overwhelming amount of variance to

the data and captures the first PC all by itself. The

remaining PCs can account for all remaining brain images,

but not in an optimal way since everything is predicated on

being orthogonal to the unrepresentative and pathological

first PC. Clearly, a better strategy would be to down-weight

the contribution of the problematic brain image such that a

better representation of all images in the sample is

achieved in the first few PCs of an optimized PCA. In the

field of computer vision, a large variety of just such

approaches has been proposed using iterative algorithms or

exact closed-form solutions (for instance [5–8]). We will

not try to pursue these approaches any further for the sake

of brevity. However, when reviewing PCA results the

analyst should look for signs of trouble and abnormally

large variance contributions. If a brain image produces its’

own first PC, the common-sense first line of attack would

be to just re-run the analysis without the problematic data

point.

A Toy Example

First, we would like to demonstrate a scenario for which

multivariate analysis performs better than univariate anal-

ysis with a Monte-Carlo simulation. The toy problem

defined for this simulation is a simple classification

between two age groups. The data set is constructed as

follows:

Y ¼ v zyoung; zold

� �TþE:

The pattern v is a two-dimensional binary 0–1 pattern of

adjoining squares, comprising 100 * 100 = 10,000 pixels

overall. The subject scores for the two age groups are

sampled from two normal distributions with equal variance

but different means, every subject i in the age group is

treated identically (Fig. 1):

zðiÞyoung�N �1; 1ð Þ; z
ðiÞ
old�N 1; 1ð Þ i ¼ 1; . . .; 50:

Further we add Gaussian identically and independently

distributed voxel and subject noise, i.e., for any voxel k and

any subject i, we have:

Eik �N 0; rð Þ:

For our simulation, we will now vary the noise amplitude r
and observe the performance of a standard mass-univariate

group comparison using a T-test and multivariate PCA.

In Fig. 2, we display the results for the univariate T-test

for three noise levels r = 2, 5, 10 and also perform a PCA

for noise level r = 10. The T-test has been corrected for

10,000 comparisons with a Bonferroni correction, setting a

threshold of T = 4.66.
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From the figure, one can appreciate how the increasing

noise levels gradually cause the univariate T-test to suffer

from increasing number of false positives. For r = 10, no

voxel are caught by the T-test any longer, and the true-

positive rate drops to zero. The PCA, on the other hand, as

can be seen in the lower panel in Fig. 2, still established a

clear group-difference between old and young in the sub-

ject scores of PC 1. Also, one can clearly visually recog-

nize a noisy version of the binary pattern in PC 1 itself.

In Fig. 3, the noise level is varied more comprehen-

sively across the range r = [0, 10] in increments of 0.01.

The plot shows the true-positive rate for the univariate

T-test, as well as the R2 of the correlations between PC 1

and the binary pattern, and their subject scores. One can

appreciate that by r = 6, the univariate analysis fails to

identify any of the signal voxels. The multivariate analysis,

on the other hand, even at r = 10 retrieves a first PC that

looks topographically similar to the binary pattern, and

whose subject scores are very highly correlated with the

scores of the binary pattern (R2 = 0.91).

Some observers might be skeptical whether the

increased sensitivity of the multivariate analysis looks

Fig. 1 Visual illustrations of

the binary pattern v (left panel)
and the subject scores zyoung and

zold

Fig. 2 Simulation results: upper row, the thresholded univariate

T-fields are shown for noise levels r = 2, 5, 10. One can appreciate

the decreasing true-positive rate. At r = 10, no signal is recovered,

while the stringent Bonferroni correction for 10,000 comparisons

makes sure there are no false positives. Lower row: the results of the

PCA are shown for r = 10: the subject scores of the first PC show a

significant group difference between old and young. Further, the

topographic composition of the first PC is visually similar to the

binary target pattern
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good only by virtue of increasing the false positives. This

can be easily checked by generating pure Gaussian noise,

i.e., only retaining the error terms in the Monte-Carlo

construction of the data array, and re-applying the PCA.

In Fig. 4, we display the results of 10,000 such noise

simulations, and plot the resulting group T-contrast values

computed from the subject scores of the first PC. Super-

imposed on the empirical histogram is the theoretical curve

for a T-distribution with 99 degrees of freedom. Increased

false positives would imply ‘‘fat’’ tails, i.e., a histogram

that was much wider than the theoretical T-distribution;

fortunately, this is not the case.

The little simulation just presented in favor of multi-

variate analysis of course contains one crucial assumption,

namely that the pattern of activated voxels is widely dis-

tributed. If a substantial part of all image voxels are par-

ticipating in the pattern, their mutual correlation can be

used to separate signal from noise. This does not work for

focal activation. For instance, when re-running the simu-

lation with a much reduced signal area in the binary pat-

tern, a 3 9 3 voxel patch in the center, the univariate

analysis—as expected—is unaffected, while the results are

changed radically for the multivariate analysis. Once the

noise level reaches r = 1, both topographic correlation as

well as correlation of subject scores between the first PC

and the binary pattern have fallen to zero. For such focal

activation, i.e., 9 activated voxels out of 10,000, the first

PC is dominated by the noise of the remaining 9,991 voxel

that carry no signal. The lesson for brain imaging is that if

truly focal activation is expected, univariate analysis is

more effective than multivariate analysis.

Multivariate Extensions

We outline a variety of sophistications of the simple

framework presented above. The first extension will con-

cern the data array used in the multivariate decompositions.

The second extension concerns possible transformations of

the data array prior to any multivariate decomposition.

Data Formats

In all applications shown in this article, we will keep to the

simple data structure explained above, i.e., for R voxels and

N subjects the format of the data matrix is

Yf g ¼ R� N;

implying that there is only one brain image per subject in

this data array. This restriction can be relaxed: in most

experiments of cognitive neuroimaging a whole time series

of T brain images is acquired for each participant. In the

standard approach of hierarchical linear modeling, each

participant’s time-series is reduced two several contrast

maps through the use of linear time series analysis, before

moving onto the group-level analysis. For our analysis

purposes, nothing much changes. The only complication

might be that there is now more than one experimental

condition. If the experimental design offers C conditions,

the group-level data array, after estimation of within-

subject contrast maps, would have the format:

Fig. 3 Comprehensive display of univariate true-positive rate (blue),

topographic correlation between first PC and binary pattern (green),

and correlation between subject scores of first PC and binary pattern

(red)

Fig. 4 Empirical histogram generated for the subject score of the first

PC obtained in 10,000 Monte-Carlo simulations of Gaussian IID noise

and theoretical curve for a T-distribution with 99 degrees of freedom.

Increased false positives for the multivariate technique would imply

‘‘fat’’ tails, i.e., a histogram that was much wider than the theoretical

T-distribution; fortunately, this is not the case
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Yf g ¼ R� N � Cð Þ;

that is, the data array features one brain image per

participant per condition, and the subject and condition

indices have been nested in the column index of Y.

If, on the other hand, one refrains from reducing the full

data array by time-series analysis or any other means, the

full data array is a third-order tensor,

Yf g ¼ R� T � N

and any condition information is implicitly contained in the

time dimension. Such a data array is more complicated

than a simple matrix and a multivariate decomposition less

straightforward. Possible approaches to deal with these

three-way data are the parallel factor analysis (PARAFAC)

framework [9] or tensorial ICA [10].

More easily and more commonly, the time and voxel

dimensions are collapsed into the row index, leading to a

reduced data matrix,

Yf g ¼ R � Tð Þ � N:

Mathematically, the treatment of such a data matrix is

identical to our example above. The resulting PCs though

are no more merely brain images, but rather ‘‘brain

movies,’’ i.e., N - 1 time series of brain images. The

important feature of group-invariance though is preserved:

the series of N - 1 Eigen movies do not contain any

subject information. This information is still contained in

the subject scores. Each score now quantifies to what

extent a subject’s time series expresses the associated

Eigen movie.

Pre-Transformation with Design Matrix

Apart from considerations about the format of the data array,

multivariate analysis often uses a linear pre-transformation

in form of a design matrix X. X has the same number of rows

as Y, but already achieves a dimensionality reduction by

having fewer columns than Y. We denote the number of

columns in X as P, and call the columns ‘‘predictors.’’

The data matrix Y is multiplied with X from the right,

and we find

YXf g ¼ R� P:

For our PCA discussion above, this does not really

introduce many complications. In the above formalism,

matrix Y can just be substituted by YX. Instead of

submitting N brain images to a PCA, we are now only

analyzing P images, i.e., the number of predictors in the

design matrix determines how many PCs can be recovered.

The representation of the transformed data matrix YX can

then be written as before as

YX ¼ VZT

but the score matrix Z now consequently only has P rows

and columns.

This approach is widespread in the literature can be

found with the labels multivariate linear modeling (MLM)

[11, 12] or partial least squares (PLS) [13, 14]. PLS also

has a well-formulated spatiotemporal version (stPLS) that

uses the full voxel- and time-information to produce Eigen

movies [15].

We have our own approach, ordinal trend canonical

variates analysis (OrT/CVA) [16] that seeks to derive

monotonically changing activation patterns on a subject-

by-subject basis in repeated-measured design with a spe-

cially formulated design matrix.

The purpose of the pre-transformation with X is a sim-

plification and prior dimensionality reduction before a PCA

is even applied. The implicit assumption is that the mul-

tiplication with X removes data variance that is uninfor-

mative and only contributes noise that might otherwise

hamper the detection of interesting effects if the full data

array Y was submitted to a PCA. The dimensionality

reduction achieved by some common design matrices can

be quite substantial. A hypothetical, but nevertheless rep-

resentative, example might be the following: assume 40

human participants, scanned in 2 experimental conditions.

Based on 3 locations of interest, ‘‘voxel seeds’’ are used to

compute across-subjects correlational images of the acti-

vation in these 3 voxel locations with the rest of the brain

in both experimental conditions. This means that the

effective data matrix YX has the format

XYf g ¼ R� 6:

The rank of the data matrix is thus reduced from

40*2 = 80 to 6, and the PCA is now executed on six brain

images, rather than 80. The score matrix Z now contains 6

Eigen vectors that quantify to what extent the 6 PCs of YX

load onto the predictors of X, rather than participants in Y.

The judgment whether a particular design matrix is

appropriate or not cannot be answered by mathematical

criteria. Using a low-dimensional design matrix is never

‘‘wrong’’ on mathematical grounds, but it might unhelpful

in recovering interesting activation, particularly if it rids

the data of precisely such information in the first place.

Projecting the data into a low-dimensional sub space

ensures that the results are easily interpretable for the

analyst, but it might not reveal the most informative

aspects of the data. For exploratory analyses where a priori

guidance of prior literature or well-established models is

lacking, overly restrictive design matrices, therefore, have

less of a role to play.

However, we do not want to be too critical of the design-

matrix approach. Strong a priori insight might provide
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enough guidance in selecting low-dimensional design

matrices. For our hypothetical example, the analyst might

have a well-founded interest in a multivariate description

of the similarities and differences of the six correlational

seed images, rather than getting a full description of all

subject and task effects in the data, some of which are

bound to represent task-unrelated variance. In the absence

of such strong guiding information though, we would

advise care in selecting design matrices. Further, it does not

hurt to do the PCA on the full data array and check whether

the subject scores of the PCs with the largest variance

contribution show any correlation with either task or nui-

sance variables. In our opinion, more exhaustive knowl-

edge and understanding of the data is a good thing, whether

the data suffer from artifacts or not.

Statistical Inference

For completeness, we quickly sketch current practices of

performing statistical inference for multivariate PCA-based

techniques, with the caveat that, again, we cannot speak for

all possible PCA-based approaches in existence.

For multivariate analysis, statistical inference can con-

cern (1) the topographic composition of the covariance

patterns, and (2) the subject scores of the covariance pat-

terns. The first item mainly targets the question ‘‘Which

voxels are reliably activated/contained in my covariance

pattern?’’ The second item has more facets, and one could

ask a variety of questions that each entail a test of a dif-

ferent null-hypothesis and involve the pattern scores, like

‘‘Is the relationship between subject scores of my pattern

and a particular subject variable statistically significant?,’’

‘‘Are subject scores of my pattern significantly related to

the experimental design?,’’ ‘‘Does my pattern account for a

statistically significant portion of the variance in the data,’’

or ‘‘Are subject scores of my pattern significantly different

from zero in a particular experimental condition?’’

First, we consider statistical inference concerning the

pattern’s topographic composition. As we mentioned

before, for most neuroimaging experiments there are far

fewer observations (=images) than voxels. This means that

there is no parametric formula that can be applied to decide

whether a voxel is significantly activated or not. Several

approaches use a semi-parametric bootstrap estimation

procedure [2] to assess the reliability of individual voxels’

contribution in the covariance pattern. The advantage is

that the bootstrap is conceptually easy to understand. It

consists of the repeated execution of the derivation of the

point-estimate covariance patterns, but each time the data

is re-sampled with replacement from the original pool of

subjects. This means that some subjects are represented

more than once in the bootstrap sample, while others are

totally dropped. On this re-sampled data, all steps that were

employed for the derivation of the point-estimate pattern

are executed again.

Figure 5 shows the bootstrap procedure schematically.

We assume a covariance pattern v was derived from the

unperturbed data matrix Y. The data sample is re-sampled

with replacement to produce the bootstrap data matrix Y*

and design matrix X*, and the pattern derivation algorithm

is applied to derive a new bootstrap pattern v*. The re-

derivation step is repeated many times (*500 times).

Finally a Z-score can be computed for each voxel location

i as the ratio of the voxel weight divided by the bootstrap-

incurred standard deviation around this point estimate

Z ið Þ ¼ v ið Þ=STD v ið Þð Þ; i ¼ 1; . . .;R:

This computed Z-statistic roughly follows a standard-nor-

mal distribution.2 A one-tailed p-level of 0.001 implies a

threshold of |Z| [ 3.09.

The second type of statistical inference involves pattern

scores. As our sample questions demonstrated many more

tests and associated null-hypotheses can be investigated.

Most of these will demand non-parametric permutation

tests, i.e., the null-hypothesis distribution for any statistic

of choice is generated from the data itself by destroying the

subject-group or –condition assignment, particularly when

a design matrix X is used that encodes subject information

subsequently used in the particular test of interest. The

following exceptions to the non-parametric testing

requirement are easy and clear to formulate and follow

Fig. 5 Schematic figure for illustration of the bootstrap procedure for

assessing the robust of individual voxel weights in the covariance

pattern. Sampling from the pool of subjects with replacement results

in some subjects being dropped, while others are represented more

than once in the associated data and design matrix Y* and X*,

respectively. The algorithm that was applied to XY to derive a

covariance pattern v is performed on Y*X* to obtain v*. Resampling

and subsequent pattern derivations are repeated * 500 times. From

all 500 bootstrap patterns, a Z-map can finally be computed

2 The larger the number of voxels in the data array, the more the

empirical bootstrap distribution of individual voxel weights looks

standard-normal. When the number of brain regions in the array is

small, i.e., similar to, or a low-integer multiple of, the number of

observations, the bootstrap distribution can deviate substantially from

a standard-normal distribution.—Repeated personal observation by

the authors.
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directly from the avoidance of any independence violation

(‘‘double dipping’’ [17]):

1. When no design matrix is applied prior to the PCA, the

statistical significance of a brain-behavioral relation-

ship between pattern scores and subject variables can

be assessed using standard parametric statistics;

2. When a covariance pattern is applied prospectively to

a replication data set, i.e., a data set that it was not

derived from in the first place, any brain-behavioral

relationship between the resulting pattern scores and

subject variables can also be assessed using standard

parametric statistics. This is even possible when the

pattern derivation utilized a design matrix that incor-

porated the particular subject variables in question for

the derivation data set.

A Caveat About the Interpretation of Multivariate

Patterns

Before we go on and apply PCA and a variety of classifiers

on some real-world data, we close with a remark about the

interpretation of covariance patterns. These considerations

are equally valid for Independent Component Analysis [18]

or any other multivariate decomposition routine that uses a

feature like orthogonality or statistical independence to

derive components in terms of which the data can be

described. Although it is tempting, one should be careful in

assigning biological meaning to these components, partic-

ular in absence of any observed brain-behavioral relation-

ships. After all, the feature of orthogonality/statistical

independence follows necessarily from the PCA/ICA step

itself; even when applied to meaningless statistical noise,

the resulting PCs or ICs will display mutual independence,

but in this case it is obvious that they cannot serve as the

neural substrates of any meaningful cognitive or biological

processes. For real-world data the problem is only slightly

better: now we have meaningful signal mixed in with sta-

tistical noise, but it is unlikely that the particular decom-

position adopted achieves a neat break-down into separate

components that exclusively capture either signal or noise.

The components are most likely made up of varying mix-

tures of both. Further, whether neural substrates of different

cognitive or biological processes in the brain display sta-

tistical independence in the way that PCA/ICA demand is a

research question with an empirical answer, and cannot be

taken as a given.

In summary, it is worth keeping this in mind: PCA and

ICA are useful tools for dimensionality reduction and

achieve sparse representations of complex data. ICA in

particular has been used successfully for artifact detection

and source dimensionality estimation [19]. However, it is

less clear whether the feature of uncorrelated or statistically

independent sources (and the metaphor of the ‘‘cocktail

party problem’’ [18]) is appropriate for brain function,

and consequently whether the components resulting from

an application of PCA/ICA to brain data can themselves

be interpreted as neural substrates of brain processes. In

other words: although PCA/ICA will always come up with

separate components, these might not represent separate

networks. Additional converging evidence for heaving

identified a network is the successful prediction of subject

variables associated with the brain processes in question.

Such prediction has fortunately become more of a focus in

neuroimaging in recent years, and, in our opinion, is more

valuable than the fitting of sophisticated data models with-

out any subsequent prediction in independent data [20].

A Real-World Example from the Alzheimer’s Disease

Neuroimaging Initiative

We now put univariate and multivariate analysis to the test

on real-world data. The analysis that follows is similar to

already published results on a different data set [21], but in

the following we investigate replication more extensively

in split-sample simulations and also include additional

model selection tools.

We downloaded 40 FDG-PET scans of early Alzhei-

mer’s disease (AD) patients and 40 FDG-PET scans from

healthy control (HC) participants from the website of the

ADNI.3 The mean age of Alzheimer patients at the time of

the scan was 75.2 ± 1.1 years, and for the HCs it was

75.5 ± 0.7 years. All participants had a comprehensive

clinical and neuropsychological evaluation performed on

them, but for the simple application discussed here only

their overall Clinical Dementia Rating (CDR) scale mea-

surement was important (CDR = 1 for Alzheimer’s,

CDR = 0 for HCs).

Comparing Classifiers Through Split-Sample

Simulations

Our data set of 40 AD and 40 HC scans is an ideal play-

ground to test out a variety of univariate and multivariate

classifiers in split-sample simulations. For these simula-

tions, we divide the data randomly into a derivation sample

of 30 AD and 30 HC scans, while the remaining 10 AD and

10 HC scans serve as the replication sample. Any diag-

nostic classifier can be derived in the derivation sample,

and subsequently tested in the replication sample. The

whole procedure, i.e., random partitioning of the data,

derivation of classifiers in one part of the data with sub-

sequent test of the classifier in the remaining part of the

3 The website is: http://www.loni.ucla.edu/ADNI/.
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data, can be repeated many times to get a better idea about

the generalization of performance of the classifiers. The

success of the diagnostic prediction in the replication

samples can be recorded and enables an empirical com-

parison of all classifiers included in the simulations. The

advantage of this approach is the total absence of any

reliance on data models and the corresponding statistical

inference.

Figure 6 shows the split-sample procedure. The full data

set of 40 AD and 40 HC images is divided randomly into a

30/30 derivation sample and a 10/10 replication sample.

Any classifier of interest can be derived in the derivation

sample and then tested in the 10/10 replication sample that

was left out of the derivation. Total error rate p, false-

positive rate a, and false-negative rate b are then recorded

for the prediction made in the replication sample and can

be compared for all classifiers that were included in the

split-sample simulation. 500 iterations are run of this pro-

cedure to avoid any particular sampling biases.

We give a minimum of symbolic notation for our clas-

sifiers used in this article. In general a classifier is a

mapping from the voxel space of neural images to a binary

label with a particular algorithm C applied to a neural

image y, such that a prediction of a label {±1} results,

C yð Þ ¼ �1f g:

In the definition, we can include a vector of parameters h,

and modify this expression to

C y; hð Þ ¼ �1f g:

Different classifiers have different sets of parameters and

we will give an exhaustive listing of all parameters for each

classifier below.

Univariate Classifier

Definition of the univariate classifier is the simplest. We

give the steps of the algorithmic recipe for the derivation

below:

1. perform a T-test between the 30 AD and 30 HC images

in the derivation sample;

2. pick the voxel j that shows the largest relative deficit in

the AD patients;

3. choose a decision threshold T with maximum sensi-

tivity in the derivation sample such that at most one

HC subject is misclassified as AD.

This means there are two parameters in our univariate

classifier: a voxel location j and a decision threshold T. The

classifier and its application a brain image y in the repli-

cation sample can then be denoted as

C y; j; Tð Þ ¼ sign T � y jð Þð Þ ¼ �1f g:

Basically, voxel j is checked in the replication brain image

and if its signal level falls below threshold T, the image is

classified as AD, i.e., it is assigned a label of ?1. This is

done for every image in the replication sample.

Multivariate Linear-Discriminant Classifier

Derivation of the multivariate linear-discriminant classifier

is slightly more involved.

1. Perform PCA on combined 30 AD and 30 HC images

in the derivation sample and obtain matrices V of PCs

and Z of subject scores.

2. Pick a set of PCs SET.

3. Perform linear discriminant regression and use the

labels {±1} as the dependent variable and the subject

scores Z(:,SET) as the independent variables; obtain

regression weights bi, i = 1,…, s.

4. Construct corresponding linear discriminant pattern

v as a linear combination of the PCs indicated in SET.

v ¼
X

bivi

5. For the expression of the discriminant pattern in the

derivation sample, YTv, choose a decision threshold

with maximum sensitivity such that at most one HC is

misdiagnosed as AD.

Fig. 6 Schematic figure to illustrate our split sample simulations for

the empirical comparison of different classifier’s prediction perfor-

mance. The data sample of 40 ADs and 40 HCs is split into a 30/30

derivation, and a 10/10 replication sample. A classifier C is derived in

the derivation sample and then prospectively applied to the replication

sample with predictions of the class labels {± 1}, corresponding to

the diagnostic status ‘‘AD’’ (label = 1), or ‘‘HC’’ (label = -1). Total

prediction error, false-positive rate and false-negative rate are

recorded each time and enable an empirical comparison of different

classifiers’ performances
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One can appreciate that now we have two parameters: a

covariance pattern v, and a decision threshold T. The lin-

ear-discriminant classifier can now be applied to an image

y from the replication sample as

C y; v;Tð Þ ¼ sign yTv� T
� �

¼ �1f g:

Thus, prospective application of this classifier to a brain

image in the replication sample entails computing the level

of expression of the pattern in the brain image and com-

paring it to the threshold T.

We have conveniently neglected one more implicit

parameter: the set of PCs SET used in the pattern con-

struction. Once a choice for SET has been made, a

covariance pattern can be constructed and SET itself does

not appear as a parameter in the final form of the classifier.

However, the optimal choice for SET is far from trivial

since there are so many possibilities that an exhaustive

search quickly becomes impossible. For instance, if there

are 20 PCs, there are

220 � 1 ¼ 1048575

possible choices to select a subset among these 20 PCs.

This combinatorial explosion necessitates some strategies

to limit the search space. We confine our search to con-

tiguous sets of PCs like {1,2,3,4,…,s}. This drastically

reduced our number of possible choices from 2N – 1 to

N. As expected, there are many approaches to settle on an

optimal choice for SET [22]. One could choose an infor-

mation-theoretic criterion like AIC, BIC, Minimum

Description Length or C–p Mallow’s criterion [23, 24].

Further, one could chose an empirical approach of k-fold

cross validation [4] to derive the optimal PC-set that yields

the best replication in the left out data folds, already in the

derivation sample. The advantage of the latter is that it is

completely model free and does not rely on any assump-

tions; the drawback, however, is that it is computationally

more expensive. For a k-fold cross-validation procedure,

any PCA and classifier derivation has to be run k times, and

the prediction error is computed on the average across the

k left out data folds. K-fold cross validation thus roughly

represents a k-fold increase in computational expense

compared to any information-theory based approaches.

The problem of the optimal subspace selection is very

important, but not the main focus of this paper. To give a

quick flavor of the possibilities and enable a simple com-

parison of model-free and information-theory based

approaches, we constructed the linear-discriminant classi-

fier both using fivefold cross validation and minimization

of the AIC criterion. For the fivefold cross-validation

procedure, we picked the total prediction-error rate as the

loss function to be minimized, i.e., we chose the set of PCs

that gives the lowest prediction error in the left out data

fold, regardless of whether the error is a false positive or a

false negative. For the AIC computation, we employed a

small sample correction computed for the linear discrimi-

nant regression as explained in [23], and picked the PC-set

with the lowest AIC value. For both cross validation and

AIC optimization, we only considered the PCs that have

Eigen values bigger than unity, further restricting the

number of PC-sets that need to be tested. We tested the

effect of admitting all PCs, but found that, in addition to

prolonging the computation time, it always resulted in

over-fitting for both approaches (results not shown).

For notational clarity, we dropped argument and

parameters in the notation, and settled on the following

classifiers,

1. C-UNI: univariate classifier;

2. C-LD/AIC: multivariate linear-discriminant classifier

using AIC-based subspace selection;

3. C-LD/5CV: multivariate linear-discriminant classifier

using fivefold cross validation for subspace selection.

Results of Split-Sample Simulations

We performed 200 iterations of the split-sample simula-

tions and recorded the total-error rate p, the false-positive

rate a, and the false-negative rate b. We display the mean

results in Table 1.

The table shows that both linear-discriminant classifiers

do better in all aspects of performance than the univariate

method. Further, for both multivariate techniques it appears

that the added effort of fivefold cross validation pays off

and gives lower total error rates and false negatives than for

the classifier constructed using the AIC criterion, while the

false-positive rate is virtually the same.

Because it is easy to compute, we also took a majority

vote of all 3 classifiers as

Table 1 Replication performance of 3 classifiers and a majority vote of all 3 classifiers as recorded in a split-sample simulation with 500

iterations

C-UNI C-LD/AIC C-LD/5CV Vote

Total error p 0.301 ± 0.005 0.220 ± 0.004 0.209 ± 0.004 0.213 ± 0.005

False positives a 0.122 ± 0.006 0.097 ± 0.005 0.103 ± 0.005 0.090 ± 0.005

False negatives b 0.480 ± 0.008 0.340 ± 0.009 0.315 ± 0.008 0.336 ± 0.008

The univariate classifier performs noticeably worse than the alternatives
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Vote¼ sign C�UNIþC�LD=AICþC�LD=5CVf g=3ð Þ:

One can see from the table that the this majority vote

comes close to the performance of C-LD/5CV. Combining

classifiers in this manner might be a good strategy to hedge

against any particular deficiencies in any one of them and

make the results more robust. We can test this further by

introducing deliberate labeling errors into the derivation

sample in our simulations. We conducted the split-sample

simulations again with the same parameters as before, but

one crucial difference: varying numbers of AD patients and

HC subjects were swapped between the groups, keeping

the overall number of nominal AD patients and controls

constant. We swapped 1, 2, or 3 persons between the

groups, meaning we introduced a total of 2, 4, or 6 labeling

errors.

Table 2 shows the results for these simulations for the

total prediction error. One can appreciate that the linear-

discriminant classifier with fivefold cross validation is still

the best performer, but the majority vote presents a good

strategy to limit the impact of the labeling errors on the

prediction success in independent data. While this example

might appear somewhat contrived since subjects of

uncertain diagnostic status should normally always be left

out of any classification, there are other factors that might

hamper the classification and are hard for the analyst to

correct for. Taking the majority vote of several classifiers is

an easy first defense against such difficulties.

Conclusion

This article gave a basic overview of PCA-based multivar-

iate approaches with demonstrations on simulated and real-

world data that demonstrated better sensitivity and replica-

bility of multivariate over mass-univariate approaches. This

fact by now has become well established in the neuroim-

aging community, and our demonstrations partly underline

what has been shown in numerous other publications as well

(e.g., [13, 14, 25–30]). Comparative surveys of univariate

and multivariate approaches to map neural substrates of

cognitive processes have often suffered from clear and

understandable performance metrics, and instead had to

invoke appeals to functional connectivity arguments and

Occam’s razor to make the case for multivariate approaches.

Applications of brain reading, which has the goal of pre-

dicting subject information, like diagnostic AD status, from

brain data, rather than mapping it in brain data, offers pre-

dictive success in independent data as a metric for com-

parative apples-to-apples methods’ evaluation, and thus

does not need appeals to functional connectivity etc. Our

split-sample analysis of FDG-PET data obtained from the

ADNI study demonstrated that diagnosis of AD in inde-

pendent data clearly necessitates a multivariate approach.

We can speculate why spatially correlated brain signals

carry more information about the diagnostic status than any

voxel-wise signal, and the reasons are three-fold.

1. Low-rank data: this first reason applies to any neuro-

imaging study that acquires brain-wide data and has

nothing to do with functional connectivity or co-

activation of areas; usually in neuroimaging experi-

ments the number of observations (=number of brain

images) is small compared to the number of variables

(=number of voxels). This means that conducting

analyses on a voxel-by-voxel basis has to involve

redundancy, by definition. There has to be correlation

between the voxels, purely on account of the grave

imbalance between the number of variables and

observations. Picking key voxels to predict outcome

measures, like diagnostic status, is thus bound to be

inefficient compared to an approach that uses a

dimensionality reduction like PCA first.

2. Spatially spreading pathology: the second reason

involves the assumption of spreading disease pathol-

ogy, for any neurodegenerative disease; even if no

brain areas share any mutual ‘‘communication’’ of any

sort, focal deficits induced by the disease process that

gradually spread to neighboring areas will be more

easily detectable with multivariate analysis. Particu-

larly in the face of noisy signals, the whole pattern of

the spreading signal deficit can probably be picked up

earlier and more reliably before a single regions’

deficit has reached a detectable threshold.

3. Functional connectivity: the last reason involves

genuine communication of brain areas beyond just

spatially spreading activation or de-activation. The

Table 2 Prediction error of 3 classifiers and a majority vote of all 3 classifiers as recorded in a split-sample simulation with 500 iterations, with

deliberate labeling errors that were introduced in the derivation sample

C-UNI C-LD/AIC C-LD/5CV Vote

SWAP = 1 0.317 ± 0.004 0.251 ± 0.004 0.230 ± 0.004 0.238 ± 0.004

SWAP = 2 0.331 ± 0.004 0.277 ± 0.004 0.245 ± 0.004 0.260 ± 0.004

SWAP = 3 0.345 ± 0.004 0.309 ± 0.005 0.277 ± 0.005 0.295 ± 0.005

‘‘SWAP = N’’ implies that N patients were labeled as HCs, and N HCs were labeled as AD patients, resulting in 2 N labeling errors in total
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scenario of brain areas that actively interact with one

another lends an even stronger rationale for multivar-

iate analysis and additional verification of network

activity that can account for behavioral performance in

cognitive tasks on a subject-by-subject basis. Admit-

tedly, this is an ambitious research program, and the

examples presented in this study cannot speak to

functional connectivity in this strict sense, since they

only involved group-level derived covariance patterns.

Nevertheless, as we have seen, even without postulat-

ing functional connectivity, multivariate analysis has a

major role to play in neuroimaging.

We close our report with several comments about multi-

variate analysis in the context of the rapidly expanding field

of brain reading: numerous studies and comparative surveys

of different classifier and predictors have been presented in

recent years that exceed our simple linear-discriminant

classifiers in complexity and power, and have been applied

both at the group level and within subjects (e.g., [31–37]). It

is impossible to do justice to all contributions here, but it

might helpful to point out some caveats and challenges for

further methodological research in this exciting field.

As we mentioned, with the premise of brain reading the

focus of neuroimaging analysis is no longer to find a neural

correlate y of a cognitively or clinically relevant subject

variable x as

y xð Þ

but instead to find a reasonable classifier or predictor

function such that

C yð Þ ¼ x

is true. The reader can appreciate that, mathematically,

C looks like an inverse function to the neural correlate y,

but in practice there might be many instantiations of C,

many of which might involve formulation of complicated

algorithms that ensure very good predictive success and

many of which deliberately ignore features in the data. A

strict mathematical inversion of C might therefore be

practically impossible or only constitute part of the data,

i.e., the part that is most relevant to the diagnostic classi-

fication. The formulation of a reasonable classifier C is

easier, and its success easier to evaluate, than the formu-

lation of an appropriate data model y(x), particularly in

exploratory data analysis. For y(x) there is usually no gold

standard which enables empirical evaluation with tech-

niques like cross validation or replication in independent

data. This means that exploratory neuroimaging studies

that cannot build on a well established literature and

employ estimation techniques with a single a priori defined

data model are in danger of informing the analyst about the

data model at the expense of neuroscientific phenomenon

to be studied [20]. However, concerning the selection of an

appropriate parameterization and technique for classifica-

tion (which is usually called ‘‘model selection’’ and has

nothing to do with the term ‘‘data model’’ used above), this

is not a problem as we have seen in this paper. The internal

structure of the classifier is not of great importance in any

case: this might make the classifier un-interpretable or

weaken the stability of any associated neural substrates

[38], but simultaneously frees the analyst of unrealistic or

unfounded assumptions. Accurate prediction of the out-

come measure of interest takes priority, allowing fusion of

data from different modalities as well as meta-algorithms

like bootstrap aggregating [39] or boosting [40].

There are some caveats and challenges: the first prac-

tical point concerns the appropriate loss function when

trying to perform cross validation for model and technique

selection when deriving the best classifier. In our example,

we had equal number of AD patients and HCs. Our loss

function that was used in the subspace selection with cross

validation was the total prediction error. This error was just

the average of both type-I and type-II error

p ¼ aþ bð Þ=2;

which is appropriate when selecting the best model. As has

been pointed out though [41], total prediction error is not a

good performance metric in the presence of large

imbalances in the class strengths of the training labels.

For instance, if the derivation sample consists of 90 AD

patients and 10 HCs, the prediction error changes to

p ¼ a � 10=100ð Þ þ b � 90=100ð Þ:

A total prediction error of 10% could be the consequence

of a very liberal threshold that tolerates 100% false posi-

tives (all 10 HCs diagnosed as AD) in order to ensure that

the false-negative rate is zero. The total prediction error for

this scenario is obviously quite misleading and would

produce a biomarker with terrible characteristics—anybody

would be diagnosed with AD. Equally weighted averages

of a and b are would be preferable and more meaningful.

In general, the choice of the loss function in the cross-

validation procedure has an impact on what model and

classifier is selected. For symmetry, we advocate that loss

functions always encode the predictive success that matters

most to the analyst. In our case, this was the successful

diagnosis of AD. A different loss function, for instance the

residual unaccounted variance in the data, in our opinion

does not make sense to use here, even if it is easier to

compute. After all, we are interested in the correct diag-

nosis of Alzheimer’s, rather than giving a complete account

of the neuroimaging data.

Secondly, with the easy empirical evaluation of different

classifiers’ prediction performance, one quickly realizes

that the ranking of classifiers’ performance can differ
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substantially across different data since it critically depends

on the variance–covariance structure of the data under

consideration. This means that across-the-board statements

about the relative merits of different classifiers are suspect.

In our own anecdotal experience with Support Vector

Machines, Linear Indicator regression, Linear and Qua-

dratic Discriminants, Decision Trees, Naı̈ve Bayes Classi-

fiers and Nearest-Neighbor techniques [4] applied to

different clinical and cognitive data sets in both fMRI and

PET, we have seen that some crude and very general rules

emerge (for instance, ‘‘Nearest Neighbor and Naive Bayes

are often worse than everything else’’), but that otherwise

no fixed conclusions can be drawn. Further, and more

disconcertingly, relative performance differences as esti-

mated by cross validation within a derivation sample are

often not vindicated when testing the classifiers in inde-

pendent replication data. This means that classifier A might

give better cross-validation performance than classifier B in

the derivation sample, but B might perform better than

A when applying both to independent data. In absence of a

better theoretical understanding how the comparative per-

formance of different classifiers depends on the variance–

covariance structure in the data, it behooves the analyst to

be careful and always look at a variety of classifiers, and

possibly take an ensemble vote of all of them. For meth-

odological papers, the challenge is similar: unveiling a new

multivariate technique is most informative when compared,

at least in discussion, if not in actual performance, with

other multivariate techniques on a variety of representative

data sets. The superiority of multivariate over univariate

analysis for the majority of neuroimaging applications has

by now been unequivocally established. The next step for

the community is a better understanding of relative merits

within the large class of multivariate techniques.
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